MAGNETIC RELAXATION AND THE ELECTROMAGNETIC RESPONSE PARAMETER

G. R. OLHOEFT* AND D. W. STRANGWAY‡

Relaxation processes are important in the study of electromagnetic prospecting techniques. These processes can be the result of magnetic fields due to eddy currents in electrical conductors or due to displacement currents from dielectric processes or magnetic fields associated with direct magnetic loss phenomena. In the past, most attention has been focused on eddy-current losses since this is the dominant effect. Dielectric losses also may be of importance, particularly at high frequencies, where the conductivity is extremely low or where the dielectric properties become anomalously high. In general, however, little attention has been given to magnetic losses and the effect they might have on the electromagnetic response parameter. Magnetic minerals do have a measurable magnetic loss due to various mechanisms. This effect has been measured in a frequency range from 125 to 5000 hz for a variety of samples. In synthetic samples with varying amounts of magnetite dispersed in a nonmagnetic matrix the effect is linearly proportional to the magnetite content. The magnetic loss causes a distinct, but small, change in the electromagnetic response of a body. The effect can be detected, provided the peak frequency of magnetic loss is lower than the peak frequency of electrical loss. The most diagnostic feature is the reversed phase relationship from the electrical response (for constant geometries).

INTRODUCTION

Strangway (1970) has discussed possible occurrences of magnetic loss phenomena in electromagnetic material responses, and Colani and Aitken (1966) have discussed the response of magnetite in ancient hearths in terms of a magnetic relaxation loss mechanism. We will investigate here some of the magnetic effects theoretically expected in electromagnetic phenomena and then discuss some measurements of magnetic loss in minerals and possible applications.

The electromagnetic response of a sphere in free-space under the influence of a plane-wave source field has been considered by several authors (Wait, 1953; Grant and West, 1958; Ward, 1967; and others). For simplicity, we will use it in our calculations. The basic expression is of the form:

\[\mathbf{H} = H_0 R^3 (M - j \mathbf{\mathcal{V}}) \]

\[= \frac{(2\mu(\tan \gamma - \gamma) - \mu_0(\gamma - \tan \gamma + \gamma^2 \tan \gamma)}{2\mu(\tan \gamma - \gamma) + 2\mu_0(\gamma - \tan \gamma + \gamma^2 \tan \gamma)} \]

where \(\mathbf{H} \) is the secondary magnetic field measured at a distance \(r \), \(H_0 \) is the source field, and \(R \) is the radius of the conducting sphere. \(M \) and \(\mathbf{\mathcal{V}} \) are the real and imaginary components of the electromagnetic response parameter containing all of the electric and magnetic parameters describing the material causing the response. \(\mathbf{i}, \mathbf{j} \) and \(\mathbf{k} \) are unit vectors in the coordinate directions \(x, y, \) and \(z \).

Following the notation of Ward (1967), we write:

\[(M - j \mathbf{\mathcal{V}}) \]

\[= \frac{2\mu(\tan \gamma - \gamma) - \mu_0(\gamma - tan \gamma + \gamma^2 tan \gamma)}{2\mu(\tan \gamma - \gamma) + 2\mu_0(\gamma - \tan \gamma + \gamma^2 \tan \gamma)} \]

Manuscript received by the Editor April 6, 1973; revised manuscript received October 22, 1973.

* Massachusetts Institute of Technology, Cambridge, M.A.; presently with University of Toronto, Toronto, Ont.

‡ NASA-Johnson Space Center, Houston Tex.; presently with University of Toronto, Toronto, Ont.

© 1974 Society of Exploration Geophysicists. All rights reserved.
where
\[\mu = \mu' - j\mu'' \]
\[\varepsilon = \varepsilon' - j\varepsilon'' \]
\[\sigma = \sigma' - j\sigma'' \]

(4)

where
\(\varepsilon \) is the dielectric permittivity of the sphere in Farads/meter,
\(\sigma \) is the electrical conductivity of the sphere in mho/meter, and
\(\omega \) is the radial frequency.

As shown by Miles et al (1957), Landau and Lifshitz (1960), and Fuller and Ward (1970), each of the quantities \(\mu, \sigma, \varepsilon \) can be complex:

In most earth materials, the conductivity term is assumed dominant (see Strangway, 1961). With the advent of lunar exploration and in a few terrestrial applications it has become important to consider \(\varepsilon \), since the lack of moisture results in very low values of conductivity. Thus, both terms need to be considered in some applications.

As the loss is contained in the above complex quantities and is usually measured as a phase angle \(\delta \) the power loss tangent can be written as (Miles et al, 1957)

\[\tan \delta = \frac{\text{Im} \ k}{\text{Re} \ k} = \tan (\delta'/2), \]

(5)
in which
\[\tan \delta' = \tan (\delta_E - \delta_M). \]

Here
\[\tan \delta_E = \frac{\omega \varepsilon'' + \sigma'}{\omega \varepsilon'} = \tan \delta_D + \frac{\sigma'}{\omega \varepsilon'} \]
\[\tan \delta_M = \frac{\mu''}{\mu'} \]

(7)
in which \(\sigma' \) is the dc conductivity and all frequency dependent electrical constitutive relations are included in the complex permittivity.

Thus we see that the electric and magnetic loss components are independent and have opposite phases. The angle \(\delta \) represents the phase relationship between the electric field \(E \) and the magnetic field \(H \). \(\delta_D \) is the phase between \(E \) and \(D \), and \(\delta_M \) is the phase between \(H \) and \(B \), where
\[D = \varepsilon E \]
\[B = \mu H. \]

(8)

In (8) we have neglected magnetoelectric effects (O’Dell, 1971) as they are usually five or six orders of magnitude smaller than the dominant effects shown in the typical linear constitutive relations in (8). We also neglect nonlinear effects (Katsube et al, 1973), since the field strengths employed in our measurements and in exploration surveys are far below magnetic saturation levels.

For the purposes of evaluating the significance of magnetic loss with respect to eddy current loss in terrestrial prospecting systems, we have made the following simplifying assumptions [which are implicit in equation (2)]:

1. displacement currents are negligible (neglect all dielectric contributions),
\[\gamma = kR \simeq R\sqrt{j\mu_0 \omega} = \sqrt{j} \theta, \]

(2) the applied field is purely magnetic and uniform over the sphere
\[|Rk_{\text{medium}}| \ll 1. \]

We choose the first assumption in order to simplify the mathematics and to illustrate the relationship between the dominant eddy-current effect and the magnetic loss term without the additional complication of a third process. (In some cases, such as lunar studies and glacier and salt studies, the dielectric displacement current term probably should be explicitly considered.) The second assumption simplifies the effects of geometry. We may thus solve for \(M \) and \(N \) in equation (2) and plot them versus the normalized parameter \(\theta \) as shown in Figure 1 (after Ward, 1967).

The numbers 1, 3, and 300 in Figure 1 refer to the values for the sphere permeability with respect to free space. Massive magnetite has an approximate value of 3 as shown by Werner (1945). Typical rocks have lower values depending on the magnetite content. It is apparent that
where the static permeability

\[\mu_s = \lim_{\omega \to 0} \mu' . \]

\[\tau = \text{time constant such that when } \mu' = (\mu_s + \mu_\infty)/2, \omega \tau = 1. \]

\[1 - \alpha = \text{distribution parameter in which the limits are (Fuoss and Kirkwood, 1941):} \]

\[1 - \alpha = 1, \text{ a single Debye-like relaxation mechanism; and} \]

\[1 - \alpha = 0, \text{ an infinitely broad distribution of relaxation times.} \]

The \(1 - \alpha = 0\) limit is physically unrealizable as it occurs for \(\mu'' = 0\). However, approaching this limit produces loss tangents nearly independent of frequency with a time domain response proportional to the logarithm of time.

With such a frequency-dependent, complex permeability, we will have to separate the permeability and frequency from the normalizing parameter \(\theta \) in Figure 1. \((M - jN)\) is plotted in Figure 2 for varying \(R\sqrt{\sigma}\) and no magnetic loss. For fixed \(R\), it may be seen that increasing the conductivity lowers the peak relaxation frequency, indicating the change in depth penetration of the eddy-current.

Adding the complex permeability in the form of a Cole-Cole frequency distributed magnetic relaxation loss, we see that \((M - jN)\) is modified giving the electromagnetic response parameter shown in Figures 3 and 4. The differing phase of the electrical and magnetic components is shown by the reversed sign in \(N\) at the peak frequencies of the magnetic and eddy current loss respectively. Figure 3 shows the effect when \(\tau_M \leq \tau_E \) [\(\tau_M = \text{time constant of magnetic relaxation from equation (9), } \tau_E = \text{time constant of electrical relaxation, defined as in Figure 2, the reciprocal of the frequency for which the quadrature component } N \text{ peaks}, \text{and the eddy-current (surface dependent) electrical response completely dominates the (volume dependent) magnetic loss. For } \tau_M > \tau_E \text{ we see that the magnetic effect can be detected by a change in sign of } N \text{ at the peak frequency of magnetic loss } \sim \tau_M^{-1}. \] This leads to the following cases:

(1) Eddy current loss only \(\mu' = 1, \mu'' = 0\)

\[M > 0 \]

\[N > 0 \]

all \(\omega\).
FIG. 2. \((M-jN)\) versus frequency for two values of \(R \sqrt{\sigma}\) at fixed sphere permeability of 3. (In this and succeeding figures, the values above \(10^6\) hz are extrapolated from the behavior of Figure 1 as the assumptions chosen do not allow explicit calculation.) \(\mu'' = 0\).

(2) Eddy current loss plus ferromagnetism

without loss

\[\mu' > 1, \quad \mu'' = 0\]

\[
\begin{align*}
M > 0 & \quad \omega > \tau_E^{-1} \\
N > 0 & \quad \omega < \tau_E^{-1}
\end{align*}
\]

same as (2) above,

\[
\begin{align*}
\tau_M & \leq \tau_E \\
\tau_M & \gg \tau_E
\end{align*}
\]

(3) Eddy current loss and ferromagnetic loss

\[\mu' > 1, \quad \mu'' > 0,\]

\[
\begin{align*}
M < 0 & \quad \omega > \tau_E^{-1} \\
N > 0 & \quad \omega < \tau_E^{-1}
\end{align*}
\]

FIG. 3. \((M-jN)\) versus frequency including Debye relaxation magnetic loss showing the effect of the magnetic time constant variation.
\[
\begin{align*}
M < 0 & \quad \omega = \tau_M^{-1} \\
N < 0 & \quad \omega \approx \tau_E^{-1}
\end{align*}
\]

These ranges are only qualitative as the sign changes in \(M \) and \(N \) do not occur exactly at \(\tau^{-1} \) but shift slightly depending upon the exact values of conductivity and permeability. Also, in case 3b, if \(\tau_M > \tau_E \) and the magnetic loss is small, \(N \) may remain positive and only dip slightly instead of changing sign.

Figure 4 shows the effect of the distribution parameter 1-\(\alpha \). The maximum possible loss tangent due to magnetic loss as shown in Figures 3 and 4 is 0.5 with 1-\(\alpha = 1.0 \).

Galt (1952) has measured a maximum loss tangent of 0.46 at 20 kHz using very carefully prepared, single crystal magnetite. The maximum loss tangent we have observed for naturally occurring, polycrystalline magnetite is 0.05 (see below). Thus, the actual effect is one-tenth or less the size of that shown in Figures 3 and 4. Colani and Aitken (1966) have reported the use of magnetic loss techniques to detect ancient hearthsites by their magnetic mineral content.

EXPERIMENTAL OBSERVATIONS

Measurement techniques for magnetic relaxation phenomena may be found in Galt (1952), Tomono (1952), Miles et al (1957), ASTM (1964), Olhoeft (1972), and Mullins and Tite (1973). Becker (1951), Street and Wooley (1949), Williams et al (1950), and Pry and Bean (1958) discuss theoretical and experimental results for audio-frequency magnetic losses. Becker (1959), Bozorth (1951), Ratheneau (1959), Chikazumi (1964), Sparks (1964), and Poole and Farach (1971) review the various types of magnetic loss mechanisms from very low frequencies (periods in years) to very high frequencies (> 10⁹ Hz). Gevers (1945) and Shuey and Johnson (1973) are excellent sources for general theory of relaxation.

Nagata (1961), Strangway (1967), and others have discussed the general magnetic properties of minerals. Neel (1949) developed the theory of ferrimagnetism (Brown, 1965; Smart, 1966), and the theory of magnetic viscosity having to do with wide relaxation distributions in fine grain, superparamagnetic interactions (LeBorgne, 1960; Gose and Carnes, 1973). Standley (1972) has an excellent collection of magnetic properties including audio-frequency magnetic loss for oxide magnetic materials.

We have used an experimental arrangement similar to that used by Colani and Aitken (1966). Figure 5 schematically shows the arrangement. The procedure is as follows. A balanced pair of receiving coils is placed within a long cylindrical source solenoid. The coils are connected in parallel so that a current pulse in the solenoid produces equal and opposite (canceling) voltages in the pair of coils. A sample is placed into one of the coils of the balanced pair to unbalance the assembly so that the current pulse in the solenoid when
magnetizing the sample and the magnetization decay when the pulse is turned off will produce a voltage output at the balanced-coil-pair output proportional to the time rate of change of the sample magnetization. This voltage is then integrated and transformed into the frequency domain with a Fourier series expansion (Hildebrand, 1956) to determine the real and imaginary components of the magnetic behavior. These can be combined and written as a loss tangent:

\[
\tan \delta_M = \frac{\text{Im} \mu}{\text{Re} \mu} = \frac{\xi (\omega t)^{1-\alpha} \sin (1 - \alpha) \pi/2}{1 + \xi + (2 + \xi) (\omega t)^{1-\alpha} \cos (1 - \alpha) \pi/2 + (\omega t)^2 (1-\alpha)}, \tag{10}
\]

where

\[
\xi = \frac{\mu_s - \mu_\infty}{\mu_\infty}.
\]

The primary source solenoid supplied fields up to 5 gauss, though typically measurements were performed using 1 gauss in order to remain in the linear region of the \(B-H\) hysteresis curve. Primary pulse length was 2.0 msec with an equivalent quiet period for measurements (alternate pulses were of opposite polarity). The typical transformed output was usable over a frequency range of 125–4000 Hz.

Figure 6 displays Galt's (1952) data for single crystal magnetite. Figure 7 shows Galt's data replotted as a loss tangent in comparison with our measured magnetic loss tangent for naturally occurring polycrystalline magnetite. Galt's loss tangent has a slope indicating a distribution parameter of \(1 - \alpha = 0.37\), a relatively broad distribution of relaxation times. Our measured results approach those reported by Galt at low frequencies, but differ widely at the higher frequencies. We attribute this difference to the probable disparity in number of domain walls and their freedom of movement between single crystal and polycrystalline states. Indeed, Galt attributes the peak in the loss tangent at 20 kHz to domain wall movement. The error bars at the low frequencies in our data are the result of the coil response.

Figure 8 displays the variation of the loss tangent with changing quantities of magnetite in artificial samples constructed of Secar cement with given weight percentages of magnetite. The high-frequency error bars are caused by uncertainties introduced by the use of a high-frequency filter to reduce noise. Figure 9 shows a plot of \(\xi\) versus percent magnetite as measured from the natural sample (99 percent) and the artificial samples. Table 1 lists the various parameters found to characterize the magnetic response. For each parameter, the range of values shown corresponds to the error bars indicated. The errors are primarily caused by the restricted coil response at low frequencies.

The transformed relaxations yielded distributions whose loss tangents all peak in the region below 550 Hz. Multiple coil sets with differing resonance properties, differing magnetization pulse lengths (50 \(\mu\)sec to 8 msec) and direct frequency-domain measurements (Miles et al, 1957) were used to verify that the observed
relaxations were due to the samples and not an artifact of the measurement system.

In addition to ferrimagnetic mineral samples, several nonmagnetic, highly conductive samples were measured to observe the amount of eddy-current contribution in the system. No response was observed for monocrystalline samples of pyrite, chalcopyrite, or an aluminum rod. A piece of copper rod, however, showed the response pictured in Figure 10. This gave a transformed

FIG. 7. Figure 6 replotted as a loss tangent with our measured loss tangent of naturally occurring polycrystalline magnetite.

FIG. 8. Several loss tangent spectra for artificial samples with varying magnetite content; the weight percentages of magnetite are indicated.
result which exhibited the reverse phase from that exhibited by the ferrimagnetic samples confirming that it was an eddy current response. The amount of eddy current response for the minerals in Table 1 was typically at or below the noise level of the system which was near the equivalent signal of 1 percent magnetite.

DISCUSSION

We have shown that magnetic relaxation loss is theoretically an observable modification to the electromagnetic response \((M-jN)\) of a sphere. We have further shown that magnetic loss is measurable for ferrimagnetic minerals in the laboratory. From the above laboratory evidence and the theoretical calculations it may be seen that only in case 3b above would ferrimagnetic mineral relaxation loss be observable. This implies that magnetite finely dispersed in a highly resistive matrix (volcanics for example) should give a measurable response. In such resistive areas where the eddy-current loss is small, the magnetic loss could therefore be important in creating a background effect.

If a survey were to be taken with narrow-band

![Graph](image)

FIG. 9. \(\xi\) versus magnetite content from loss tangent data.

<table>
<thead>
<tr>
<th>Table 1. Summary of Magnetic Relaxation Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C (\omega < \sim 2\pi) kHz (\omega > \sim 2\pi) kHz</td>
</tr>
<tr>
<td>Sample (\times 10^{-6}) sec (\mu_s) (\xi)</td>
</tr>
<tr>
<td>Massive magnetite Ishpeming 362–853 1.5 0.053 –0.149</td>
</tr>
<tr>
<td>Niccolite Ontario 262–301 (\ldots) 0.0038–0.011</td>
</tr>
<tr>
<td>Pyrrhotite Ontario 322–1624 1.36 0.015 –0.041</td>
</tr>
<tr>
<td>Massive sulfide Bathurst, N.B. 282–1778 (\ldots) 0.0037–0.011</td>
</tr>
<tr>
<td>Hematite Belo Horizonte 375–1276 (\ldots) 0.0013–0.0048</td>
</tr>
</tbody>
</table>

Artificial samples: [200 mesh magnetite in the indicated percentages (by weight) in Secar cement]
Secar 1% \(\text{Fe}_3\text{O}_4\) 292–1061 \(\ldots\) 0.00025–0.00067
2% 294–1990 \(\ldots\) 0.004 –0.0010
5% 299–1765 \(\ldots\) 0.011 –0.0030
10% 309–1774 1.035 0.0021 –0.0065
20% 293–2466 1.07 0.005 –0.014
50% 311–1356 1.22 0.018 –0.046
ACKNOWLEDGMENTS

This paper is based upon the M.S. thesis of G. R. Olhoeft in the Department of Electrical Engineering of the Massachusetts Institute of Technology, June, 1972. We wish to thank Dr. G. W. Pratt, Jr., Professor of Electrical Engineering; Dr. Simon Foner, Francis Bitter National Magnet Laboratory; and Dr. E. W. Fletcher, Director of Kennecott Copper Corp.’s Ledge- mont Laboratory, for their support and encouragement. This work was supported in part by the Office of Naval Research.

REFERENCES

——— 1959, Metallurgical structure and magnetic properties, in Magnetic properties of metals and alloys: Am. Soc. for Metals, Cleveland, p. 68.

Nagata, T., 1961, Rock magnetism: Tokyo, Maruzen.

Reprinted for private circulation from
Geophysics
Vol. 39, No. 3, June, 1974